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An explosion chamber is a hermetically sealed volume of arbitrary 
shape. After an explosion in an evacuated chamber, the shell is bom- 
barded with explosion products; after an explosion in a chamber con- 
taining some medium, the shell is subjected to a shock wave. In both 
cases, the she11 is subjected to a pressure impulse. There are two steps 
involved in the design of the chamber shell: 1) determining the mag- 

nitude of the impulse per unit area of the chamber wall under the as- 
umption that the chamber is absolutely rigid, and 2) determining the 
strain which results in the wall of a real chamber. 

1, Dimensional approach to the problem. We assume that in an infinite 
cylinder, or in a spherical shell, with absolutely rigid walls, an infi- 
nitely long cylindrical charge or a spheticai charge, respectively, is 
detonated. The charge is assumed to lie along the cylinder axis or at 
the center of the sphere. There is a fnnctional relationship among the 
parameters describing the effect on the shell: 

F (I, Eo, Px, Po, Pl, ro, R, Yo)= O. (i.i) 

We assume this relation can be solved for one of the parameters, 

and that we can rewrite it as 

z - e (  P' R p~ ) 
roPo ]/'k~Qo --  \kpoqo ' ro ' Po ' "to . (1.2) 

In (1.2), the explosion energy is 

go = kroPoQo. 

For a compact charge, Eq. (1.2) can be rewritten in the form 

9 = 9 (n), 9 = I / %po V k ~ o  ('1 = n / ro ) .  ( 1 . 3 )  

The natural dimensionless parameter for modeling the stress on the 
chamber wall is thus O. 

2. Experimental results. Experiments were carried out only in 
cylindrical explosion chambers, both evacuated and not evacuated, 
with cylindrical chargers. Figure 1 shows values of the function r = 
= ~01) calculated from the experimental results according to (1.3). 
The impulse I is given by 

I =  I p ( t )  dt .  

0 (2.1) 

The oscillograms in Fig. 2 show the time dependence of the pressure 
p, with a marker frequency of f = 500 kHz. Those on the left were 
obtained during explosions in vacuum, and those on the right were ob- 
tained with air in the chamber (Pi = 1 arm). These oscillograms were 

obtained by means of piezoelectric transducers and an oscilloscope for 

--I 

Fig. 1 

the pressure at the inner surface of the chamber wall after the explosion 

of a charge of a given radius r0. The area under the curve in each oscil- 
logram was calculated numericaUy and multiplied by the scale factors 
ap and at ,  yielding the impulse I. Integral (2.1) can be written 

l = ~ p a t  i .  y(x) dx (ctp= "p(t) y ( x , '  ~ t = 7 ) "  
o (2.2) 

Here the factor ap, found during the calibration of the piezoelec- 
tric transducer, and ct t are dimensionless quantities. The average 
pressures and dimensionless impulses found during the explosion of RDX 
charges having a density P0 = 1.21 g /cm s, a length L = 105 era, and 
various radii are as follows: 

ro ~ 0.4 0.5 0.6 0.7 0.8 0.9 
t90 2i0 290 490 630 t050 

P -- 170 260 420 650 780 it50 
2.5 2.7 2.9 3.3 3.8 5.3 

(P - -  1 .7  2.2 3.5 4.t 4.7 6.0  

The pressures and impulses in the numerators of the fractions are for 
explosions in vacuum, while those in the denominators are for explo- 
sions with air in the chamber. 

3. Experimental. The pressures and impulses at the chamber walls 
were determined with the experimental apparatus shown schematically 

in Fig. 3: 1) oscilloscope; 2) tube; 3) camera; 4) marker-signal oscil- 
lator; 5) transducer for triggering the oscilloscope; 6) transducer for 
pressure measurements; 7) explosion chamber; 8) vacuum gauge valve; 
9) vacuum line valve; 10) cathode follower; 11) power supply; 12) det- 
onator leads; 13) electrical detonator; 14) explosive. The explosion 
chamber was a cylindrical vessel 1.6 m long and 2R = 200 mm in 
diameter; it had a wall thickness 5 = 10 ram, and a hemispherical bot- 
tom covered with a hemispherical cover. The piezoelectric transducers 
were described in [1]. 

4. Semiempirtcal equation for the impulse. With Q0 representing 
the specific energy of the explosive, a mass M = p0V0 of explosive con- 

tains an energy E0 = p0VoQ0, where V 0 is the explosive volume. After 
the explosion of a charge of mass M, the energy E 0 ultimately appears 
as kinetic energy of the escaping explosion products (for an explosion in 
an evacuated chamber), or as the kinetic energy per unit mass of the 
gas moving behind the shock wave front (for explosion in a chamber 
containing air), and as the heat carried by the explosionproducts. We 
can thus write 

M 

Eo = T dm § Q.  
o (4.1) 

where we have assumed [2] that the mass of the gas moving behind the 
shock wave front is equal to the charge mass M. 

From the law of the mean, we have 

M 
I V3 vrn 2 

- ' ~  dm = .~- M , 
o (4.2) 

where v m is the explosion-product velocity or the average gas velocity 
behind the shock wave front, averaged over the radius in either case. 

Since most of the heat released during the reaction is converted 
into elastic-repulsion energy in the compressed explosion products [3], 

and is then converted into the kinetic energy of the escaping products 
or the kinetic energy of the gas moving behind the shock front, the 
temperature of the explosion products turns out to be low; i . e ,  the 
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Fig. 2 

second term on the right-hand side of (4.1) may be neglected. We are 
left with 

Vrtt 2 
Eo = M ~ .  (4.3) 

The kinetic energy [3] is imparted to the chamber shell in the form 
of an impulse I" = 2 ~ 0 ;  the impulse per unit area of the shell is I 0 = 
= I~ The actual impulse received by unit area of the shell is I = I0a. 
The coefficient a shows the extent of gas reflection from the wall 

(1 ~ a -< 2), and is found empirically. The space charge is V0 = kr~, 
and the shell area is S = vkR u-l. Substituting I0, I ' ,  S, M, V0, and E 0 
into I = aI0, we find 

I = (cx/v) ~V//po V 2Qo. (4.4) 

An analogous equation for the impulse was found in [4]. We can 
convert impulse (4.4) into dimensionless form by dividing it by 
r0P0 k ~ o ;  i.e.,  we find the function 

+ : - + - , , + - '  (-+--)'/' ( , , :  ~ ) .  (4.5, 

Figure 1 shows a r = r curve calculated for the cylindrical 
case with a = 2. Equation (4.4) is seen to hold for the impulse I re- 
ceived by the wall in evacuated explosion chambers for ~ ___ 25, and in 
air-filled chambers for ~ _> 40. 

Comparing the time to during which the pressure acts on the walls 
with the periods T of the eigenvibrations of typical chambers, we find 
that, generally, to << T; Under this condition, the strain inthe structure 
and in its individual elements is governed, not by the pressure magni- 
tude, but by the corresponding impulse. 

5. Basic equations for calculations.Axisymmetric vibrations an infi- 
nite thin cylindrical or spherical shell are described by 

1 
q- oJ2u : AP  (t). A : p6 ' 

E 2E 
(5.1) 

iL 
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Fig. 3 

The first equation in (6.1) for w z corresponds to the cylindrical shell, 
and the second corresponds to the spherical shell; al~o, g is the Poisson 
ratio, p is the density of the shell material, and u is the displacement. 

A solution of this equation for the initial velocity tt = AI and for 
zero initial displacement, which correspond to a stress which is effec- 
tive only briefly in comparison with the period of the eAgenvibrations, 
is 

A1 A I  
u = y sin o~t ,  Umax-- o ' (5.2) 

where Uma x is the maximum shell displacement. 
Explosive charges of a variety of shapes are encountered in practice. 

A charge for which one dimension is several times as great as theother 
two may be treated as "cylindrical," where the long dimension is the 
length of the cylinder, and r0, the reduced radius, is 

[ ab ~'/, 
to---- ~ T )  ' 

where a and b are the other two (smaller) dimensions of the charge. A 
cylindrical explosion chamber is more convenient for such charges. A 
charge having three roughly equal dimensions may be treated as 
"spherical, " the reduced radius r0 of the sphere being found from 

( 3abe ~'1, 
ro = \ T ~  / ' 

where a, b, and c are the dimensions of the actual charge. 
Using Hook's law for a = 2, we find equations useful for designing 

explosion chambers from (4.4) and (5.2): 

poro ~ I / ' ~ o E  2 ( i \ ' / '  poro s ]ff~oE 

(5.3) 

The first of these is for use in designing cylindrical chambers, and the 
second is for spherical ones. Here o d is the dynamic stress arising in the 
chamber shell during the explosion, and a0 is the velocity of sound in 
the shell. 

In conclusion, the author thanks A. A. Deribas for assistance in the 
study and for constant interest in it, E. I. Bichenkov for advice on cali- 
brating the transducers, and all those who participated in the discussion 
of the results. 
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